Decision Matrix — When to Use Flow, LWC, or Apex

1) Quick rule of thumb

e Start with Flow for guided processes, record updates, and orchestration.

e Add LWC when the Ul needs rich interaction, fast client-side logic, or dynamic layouts
beyond standard components.

e Add Apex when you need server-side transactions, complex business rules, bulk
processing, or secure integrations.

2) Quick Guide

Main Focus

Ul complexity

Logic Complexity

Data volume

Transactions

Flow
(Declarative)

Orchestrate steps;
CRUD on records;
user guidance

Standard screens;
simple conditional
steps

Low—medium;
branching, formulas,
simple loops

Low—moderate;
single record or small
sets

Single-object, simple
save

LwWC
(Custom Ul)

Rich, reactive Ul;
complex client logic;
custom layouts

High—dynamic grids,
inline edits,
autosuggest,
virtualized lists

Medium client logic
that must feel instant

Low—moderate on
client with pagination

Client-side prep only

Apex
(Server/Logic)

Complex business
logic; transactions; bulk
ops; integrations

N/A (no UI)

High; multi-object rules;
cross-object
constraints; recursion
control

High; bulk DML, async
(Queueable/Batch/Sch
ed)

Multi-step, atomic
commits,
savepoints/rollbacks



Integrations

Performance

Maintainability

Security/PHI

Accessibility

Release cadence

Simple callouts via
invocable actions

Good for
step-by-step

Highest—admin-frien
dly; versioned

Field-level security
respected

Very good with
Screen Flows +
SLDS

Frequent, safe
iterations

Call Ul services;
avoid secrets in
client

Great perceived
speed with client
rendering

Good if
componentized and
documented

No secrets in client;
guard with FLS

Must own
ARIA/keyboard
behavior

Moderate; coordinate
design reviews

Secure callouts; signed
auth; retries; error
handling

Best for heavy
compute/bulk; async
patterns

Good if layered (service
classes), unit tested

Enforce FLS/CRUD;
platform encryption;
shield logging

N/A (back end)

Moderate; CI/CD +
regression suite

3) Escalation triggers

Flow — LWC when:

e You need dynamic, data-dense layouts (nested tables, virtualized lists).

e Users need real-time feedback (debounced validation, live calculations) without server

trips.

e You require keyboard-first microinteractions and ARIA beyond Screen Flow widgets.

Flow/LWC — Apex when:

e You must enforce atomic business rules across multiple objects in one transaction.

e You need bulk-safe processing (hundreds/thousands of records).

e You're doing secure integrations, async jobs, or complex query orchestration.



e Governor limits appear in Flow/LWC patterns that Apex can optimize.

4) Do / Don’t patterns

Flow — use when

e Guided intake, approvals, routing, SLA orchestration.
e Record create/update with pre-submit validation and duplicate checks.

e Human-in-the-loop steps (screens) with conditional branching.

Avoid / Don’t

e Large loops over big datasets (risk of limits).
e Multi-object atomic commits—use Apex.

e Ul behavior that demands millisecond responsiveness—use LWC.

LWC — use when
e High-density Ul (inline editing, grids, quick filters, client sorting).
e Client-side validation, typeahead, incremental search, optimistic UI.

e Composing multiple data sources into one responsive view.

Avoid / Don’t

e Storing secrets or PHI logic in client code.
e Reinventing standard forms that Screen Flow already solves.

e Heavy data joins on client—move to Apex services.



Apex — use when

e Business invariants must be enforced server-side.
e Bulk data transformations, batch/queueable jobs, scheduled tasks.
e Resilient integrations (retry, backoff, circuit breaker patterns).

e Testable domain logic shared by multiple entry points (Flow, LWC, triggers).

Avoid / Don’t

e Ul rendering or simple CRUD you could do in Flow.

e Monolithic God classes—use service, domain, selector layers.

5) Flowchart (decision path)
1. Is there a Ul?
o No — Apex (service/batch/integration).
o Yes — Goto 2.
2. Is a standard guided form/list enough?
o Yes — Screen Flow.
o No — Goto3.
3. Does the Ul need fast, reactive behavior or complex layouts?
o Yes — LWC (call Apex as needed).
o No — Screen Flow.

4. Do you need atomic multi-object commits, bulk ops, or secure integrations?



o Yes — Add Apex (invocable from Flow/LWC).

o No — Keep solution in Flow/LWC.

6) Governance & Quality Gates
e Architecture review: Confirm choice via matrix; record rationale in the user story.
e Accessibility:
o Screen Flow: Use SLDS components; test keyboard + screen reader paths.
o LWC: Provide labels, roles, aria-*; ensure focus management.
e Security: Enforce CRUD/FLS in Apex; no secrets in LWC; platform encryption for PHI.
e Performance: SOQL/DML limits respected; cache where safe; paginate.
e Testing:
o Flow: Path coverage + automation tests (UTAM or equivalent).
o LWC: Jest unit tests + a11y checks.
o Apex: 285% critical-path coverage; mock callouts; negative tests.
e Observability: Emit telemetry (start/stop, errors, retries); log correlation IDs.

e Documentation: ADR (Architecture Decision Record) + “Runbook” for ops (timeouts,
retries, known limits).

7) Reference Templates

Story Template — Flow first

e Goal: Guided intake for ___ role



e Data scope: <objects/fields> (< N records per op)
e Validation: <rules> (pre-submit)
e Routing: Omni-Channel by <skill/priority> on Validated

e Failure modes: <what happens>

Telemetry: <events/metrics>

Story Template — LWC

e UX need: <interaction detail> (e.g., inline edit grid with filters)

State mgmt: <client vs server>

Data access: Apex controller(s)

a11y: Keyboard flow, ARIA map

Telemetry: Ul events, latency goals

Story Template — Apex

e Domain rule(s): <invariants, cross-object constraints>

Data volume: <expected size> (batch/queueable?)

Integration: <endpoint, auth, retry policy>

Limits strategy: <SOQL/DML patterns, pagination>

Tests: <happy/edge/negative>; mocks

8) Example mappings from your program

e Onboarding Wizard (mostly Flow)



o Screen Flow for steps, validation, duplicate checks
o Invocable Apex for NPPES callout + doc completeness scoring
o Omni-Channel SLA start on Validated
e Emergency QA (Flow + LWC + Apex)
o Flow for severity-driven pathing and orchestration
o LWC for “Docs Needed Now” panel (client validation, instant feedback)

o Apex for secure file checks, status updates, and escalations

9) Anti-regret checks (run before you build)
e Can 80% of this be done in Flow with one small invocable Apex? Start there.
e Does the Ul demand rich, reactive interactions? Add an LWC shell.

e Are you touching multiple objects atomically or doing bulk/integration work?
Centralize in Apex services.

e Have you documented why lesser complexity won’t suffice? If not, you're
over-engineering.



	Decision Matrix — When to Use Flow, LWC, or Apex 
	1) Quick rule of thumb 
	2) Quick Guide 
	3) Escalation triggers 
	4) Do / Don’t patterns 
	Flow — use when 
	LWC — use when 
	Apex — use when 

	5) Flowchart (decision path) 
	6) Governance & Quality Gates 
	7) Reference Templates 
	8) Example mappings from your program 
	9) Anti-regret checks (run before you build) 


