
Decision Matrix — When to Use Flow, LWC, or Apex 

1) Quick rule of thumb 
●​ Start with Flow for guided processes, record updates, and orchestration.​

 
●​ Add LWC when the UI needs rich interaction, fast client-side logic, or dynamic layouts 

beyond standard components.​
 

●​ Add Apex when you need server-side transactions, complex business rules, bulk 
processing, or secure integrations.​
 

 

2) Quick Guide 

 Flow 
(Declarative) 

LWC ​
(Custom UI) 

Apex ​
(Server/Logic) 

Main Focus​
 

Orchestrate steps; 
CRUD on records; 
user guidance 

Rich, reactive UI; 
complex client logic; 
custom layouts 

Complex business 
logic; transactions; bulk 
ops; integrations 

UI complexity Standard screens; 
simple conditional 
steps 

High—dynamic grids, 
inline edits, 
autosuggest, 
virtualized lists 

N/A (no UI) 

Logic Complexity Low–medium; 
branching, formulas, 
simple loops 

Medium client logic 
that must feel instant 

High; multi-object rules; 
cross-object 
constraints; recursion 
control 

Data volume Low–moderate; 
single record or small 
sets 

Low–moderate on 
client with pagination 

High; bulk DML, async 
(Queueable/Batch/Sch
ed) 

Transactions Single-object, simple 
save 

Client-side prep only Multi-step, atomic 
commits, 
savepoints/rollbacks 



Integrations Simple callouts via 
invocable actions 

Call UI services; 
avoid secrets in 
client 

Secure callouts; signed 
auth; retries; error 
handling 

Performance Good for 
step-by-step 

Great perceived 
speed with client 
rendering 

Best for heavy 
compute/bulk; async 
patterns 

Maintainability Highest—admin-frien
dly; versioned 

Good if 
componentized and 
documented 

Good if layered (service 
classes), unit tested 

Security/PHI Field-level security 
respected 

No secrets in client; 
guard with FLS 

Enforce FLS/CRUD; 
platform encryption; 
shield logging 

Accessibility Very good with 
Screen Flows + 
SLDS 

Must own 
ARIA/keyboard 
behavior 

N/A (back end) 

Release cadence Frequent, safe 
iterations 

Moderate; coordinate 
design reviews 

Moderate; CI/CD + 
regression suite 

 

3) Escalation triggers 
Flow → LWC when: 

●​ You need dynamic, data-dense layouts (nested tables, virtualized lists).​
 

●​ Users need real-time feedback (debounced validation, live calculations) without server 
trips.​
 

●​ You require keyboard-first microinteractions and ARIA beyond Screen Flow widgets.​
 

Flow/LWC → Apex when: 

●​ You must enforce atomic business rules across multiple objects in one transaction.​
 

●​ You need bulk-safe processing (hundreds/thousands of records).​
 

●​ You’re doing secure integrations, async jobs, or complex query orchestration.​
 



●​ Governor limits appear in Flow/LWC patterns that Apex can optimize.​
 

 

4) Do / Don’t patterns 

Flow — use when 

●​ Guided intake, approvals, routing, SLA orchestration.​
 

●​ Record create/update with pre-submit validation and duplicate checks.​
 

●​ Human-in-the-loop steps (screens) with conditional branching.​
 

Avoid / Don’t 

●​ Large loops over big datasets (risk of limits).​
 

●​ Multi-object atomic commits—use Apex.​
 

●​ UI behavior that demands millisecond responsiveness—use LWC.​
 

 

LWC — use when 

●​ High-density UI (inline editing, grids, quick filters, client sorting).​
 

●​ Client-side validation, typeahead, incremental search, optimistic UI.​
 

●​ Composing multiple data sources into one responsive view.​
 

Avoid / Don’t 

●​ Storing secrets or PHI logic in client code.​
 

●​ Reinventing standard forms that Screen Flow already solves.​
 

●​ Heavy data joins on client—move to Apex services.​
 



 

Apex — use when 

●​ Business invariants must be enforced server-side.​
 

●​ Bulk data transformations, batch/queueable jobs, scheduled tasks.​
 

●​ Resilient integrations (retry, backoff, circuit breaker patterns).​
 

●​ Testable domain logic shared by multiple entry points (Flow, LWC, triggers).​
 

Avoid / Don’t 

●​ UI rendering or simple CRUD you could do in Flow.​
 

●​ Monolithic God classes—use service, domain, selector layers.​
 

 

5) Flowchart (decision path) 
1.​ Is there a UI?​

 
○​ No → Apex (service/batch/integration).​

 
○​ Yes → Go to 2.​

 
2.​ Is a standard guided form/list enough?​

 
○​ Yes → Screen Flow.​

 
○​ No → Go to 3.​

 
3.​ Does the UI need fast, reactive behavior or complex layouts?​

 
○​ Yes → LWC (call Apex as needed).​

 
○​ No → Screen Flow.​

 
4.​ Do you need atomic multi-object commits, bulk ops, or secure integrations?​

 



○​ Yes → Add Apex (invocable from Flow/LWC).​
 

○​ No → Keep solution in Flow/LWC.​
 

 

6) Governance & Quality Gates 
●​ Architecture review: Confirm choice via matrix; record rationale in the user story.​

 
●​ Accessibility:​

 
○​ Screen Flow: Use SLDS components; test keyboard + screen reader paths.​

 
○​ LWC: Provide labels, roles, aria-*; ensure focus management.​

 
●​ Security: Enforce CRUD/FLS in Apex; no secrets in LWC; platform encryption for PHI.​

 
●​ Performance: SOQL/DML limits respected; cache where safe; paginate.​

 
●​ Testing:​

 
○​ Flow: Path coverage + automation tests (UTAM or equivalent).​

 
○​ LWC: Jest unit tests + a11y checks.​

 
○​ Apex: ≥85% critical-path coverage; mock callouts; negative tests.​

 
●​ Observability: Emit telemetry (start/stop, errors, retries); log correlation IDs.​

 
●​ Documentation: ADR (Architecture Decision Record) + “Runbook” for ops (timeouts, 

retries, known limits).​
 

 

7) Reference Templates 
Story Template — Flow first 

●​ Goal: Guided intake for ___ role​
 



●​ Data scope: <objects/fields> (≤ N records per op)​
 

●​ Validation: <rules> (pre-submit)​
 

●​ Routing: Omni-Channel by <skill/priority> on Validated​
 

●​ Failure modes: <what happens>​
 

●​ Telemetry: <events/metrics>​
 

Story Template — LWC 

●​ UX need: <interaction detail> (e.g., inline edit grid with filters)​
 

●​ State mgmt: <client vs server>​
 

●​ Data access: Apex controller(s)​
 

●​ a11y: Keyboard flow, ARIA map​
 

●​ Telemetry: UI events, latency goals​
 

Story Template — Apex 

●​ Domain rule(s): <invariants, cross-object constraints>​
 

●​ Data volume: <expected size> (batch/queueable?)​
 

●​ Integration: <endpoint, auth, retry policy>​
 

●​ Limits strategy: <SOQL/DML patterns, pagination>​
 

●​ Tests: <happy/edge/negative>; mocks​
 

 

8) Example mappings from your program 
●​ Onboarding Wizard (mostly Flow)​

 



○​ Screen Flow for steps, validation, duplicate checks​
 

○​ Invocable Apex for NPPES callout + doc completeness scoring​
 

○​ Omni-Channel SLA start on Validated​
 

●​ Emergency QA (Flow + LWC + Apex)​
 

○​ Flow for severity-driven pathing and orchestration​
 

○​ LWC for “Docs Needed Now” panel (client validation, instant feedback)​
 

○​ Apex for secure file checks, status updates, and escalations​
 

 

9) Anti-regret checks (run before you build) 
●​ Can 80% of this be done in Flow with one small invocable Apex? Start there.​

 
●​ Does the UI demand rich, reactive interactions? Add an LWC shell.​

 
●​ Are you touching multiple objects atomically or doing bulk/integration work? 

Centralize in Apex services.​
 

●​ Have you documented why lesser complexity won’t suffice? If not, you’re 
over-engineering. 

 


	Decision Matrix — When to Use Flow, LWC, or Apex 
	1) Quick rule of thumb 
	2) Quick Guide 
	3) Escalation triggers 
	4) Do / Don’t patterns 
	Flow — use when 
	LWC — use when 
	Apex — use when 

	5) Flowchart (decision path) 
	6) Governance & Quality Gates 
	7) Reference Templates 
	8) Example mappings from your program 
	9) Anti-regret checks (run before you build) 


